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A liquid bridge is a column of liquid, pinned at each end. Here we analyse the
stability of a bridge pinned between planar electrodes held at different potentials
and surrounded by a non-conducting, dielectric gas. In the absence of electric fields,
surface tension destabilizes bridges with aspect ratios (length/diameter) greater than
π. Here we describe how electrical forces counteract surface tension, using a linearized
model. When the liquid is treated as an Ohmic conductor, the specific conductivity
level is irrelevant and only the dielectric properties of the bridge and the surrounding
gas are involved. Fourier series and a biharmonic, biorthogonal set of Papkovich–
Fadle functions are used to formulate an eigenvalue problem. Numerical solutions
disclose that the most unstable axisymmetric deformation is antisymmetric with
respect to the bridge’s midplane. It is shown that whilst a bridge whose length
exceeds its circumference may be unstable, a sufficiently strong axial field provides
stability if the dielectric constant of the bridge exceeds that of the surrounding fluid.
Conversely, a field destabilizes a bridge whose dielectric constant is lower than that
of its surroundings, even when its aspect ratio is less than π. Bridge behaviour is
sensitive to the presence of conduction along the surface and much higher fields are
required for stability when surface transport is present. The theoretical results are
compared with experimental work (Burcham & Saville 2000) that demonstrated how a
field stabilizes an otherwise unstable configuration. According to the experiments, the
bridge undergoes two asymmetric transitions (cylinder-to-amphora and pinch-off) as
the field is reduced. Agreement between theory and experiment for the field strength
at the pinch-off transition is excellent, but less so for the change from cylinder to
amphora. Using surface conductivity as an adjustable parameter brings theory and
experiment into agreement.

1. Introduction
In his studies of charged jets and drops, Lord Rayleigh (1878, 1879a, b, 1882,

1891, 1892) introduced electrical forces into fluid dynamics by treating liquids as
perfect conductors but until the 1960s most research focused on the behaviour of
either perfect conductors or perfect dielectrics. To explain behaviour that was neither,
Taylor (1966) modelled certain liquids as leaky dielectrics. Leaky dielectrics – usually
homogeneous, apolar liquids with low electrical conductivities – allow free charge to
congregate at interfaces where tangential electric stresses induce fluid motion. This
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approach is known as the Taylor–Melcher theory to commemorate its originators
(Melcher & Taylor 1969; Saville 1997). In this paper we employ the theory to
describe the stability of a liquid bridge immersed in a dielectric gas.

Several earlier studies have dealt with the electrohydrodynamics of drops, jets,
or liquid bridges. Taylor (1966) introduced the model to interpret drop deformation
measurements in electric fields by Allan & Mason (1962) and demonstrated qualitative
agreement between theory and experiment. Later, extensive experiments with isopycnic
systems (Torza, Cox & Mason 1971) showed quantitative agreement with some
systems and disagreement with others. Upon making special efforts to measure fluid
properties, Vizika & Saville (1992) achieved reasonable agreement with Taylor’s small-
deformation theory. In cases where agreement was less satisfactory, small adjustments
to the interfacial tension bring theory and experiment into close correspondence.
Work by Tsukada et al. (1993) utilized a finite element technique to calculate drop
deformations in steady fields with small inertial effects and their results also agree
with the Vizika & Saville experiments. By treating nonlinear processes rigorously,
Feng & Scott (1996) improved agreement between theory and experiment for higher
field strengths and larger deformations. Surface transport – in this case convection
of free charge – was shown to play a significant role by Feng (1999). It will turn
out later that the stability of a bridge is acutely sensitive to another form of surface
transport – Ohmic conduction along the surface layer.

Whereas the work on drops focuses on deformation, studies of jets or liquid
filaments centre on stability. Experiments with jets are constrained by implementation
difficulties, so most comparisons between theory and experiment are semi-quantitative.
Nevertheless, analysis of a free liquid filament provides a basis for understanding the
phenomena. First, a liquid filament becomes unstable due to surface tension when
the deformation reduces the surface area, i.e. for an axisymmetric deformation whose
wavelength exceeds the circumference. To stabilize this configuration, an axial electric
field must provide the appropriate stresses. When the liquid behaves as a perfect
dielectric, the electrical boundary condition at the interface ensures that the free
charge is zero, i.e. the product of the dielectric constant and the normal component
of the electric field is continuous across the interface. Thus, electrical stresses due to
small deformations of a cylindrical filament in an axial field are always normal to
the interface and proportional to (εi− εe)2(−ζ)E2

on. Here, εi and εe represent dielectric
constants of the filament and surroundings, ζ is the (signed) deformation relative
to a circular cylinder, E2

o is the square of the applied field strength, and n is the
outward-pointing normal. So, normal stresses due to polarization of the interface
always tend to smooth perturbations. With a leaky dielectric immersed in a perfect
dielectric the situation is more involved since free charge moves to the interface to
modify the field and make the normal component of current vanish at the interface.
Here the electric stress has components in the normal and tangential directions.
The normal stress, now modified by the presence of free charge, is proportional to
(εi − εe)(−ζ)E2

on (Saville 1997). So, the sense of the normal force depends on the
relative magnitudes of the dielectric constants. As suggested by the expression for
the normal stress and confirmed by experiments, it is not possible to stabilize a
leaky dielectric when its dielectric constant is less than that of the surrounding fluid
(Sankaran & Saville 1993). Of course the magnitude of the field necessary for stability
is complicated by a tangential stress, proportional to the product of the induced
charge and the tangential field. Although Saville (1971) found qualitative agreement
with Taylor’s (1969) experiments on a water jet, a liquid bridge provides a more
tractable system.
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The liquid bridge configuration lends itself to studies of electric field effects since the
contact lines are pinned. In his classic work, Plateau (1863, 1864, 1865, 1866) showed
that a neutrally buoyant cylindrical bridge was stable, provided its length did not
exceed its circumference. Raco (1968) was the first to stabilize a liquid bridge between
electrodes in air by pulling a filament from a pool of liquid while increasing the
potential of one plate. González et al. (1989) solved the electrohydrostatic equations
to investigate the stability of a perfect dielectric bridge in an axial electric field.
As expected, non-axisymmetric deformations are always stable and axisymmetric
deformations above the Plateau limit can be stabilized with a sufficiently large field.
Stability depends on three parameters: the aspect ratio, β ≡ l/2a – the length of
the bridge divided by its diameter; S ≡ εe/εi – the ratio of the dielectric constant of
the outer fluid to that of the inner fluid; and ∆ ≡ aεiεoE

2
o/γ – the ratio of electric

stresses to interfacial tension forces. Here, a is the radius of the bridge, εo is the
permittivity of free space, and γ represents the interfacial tension. As expected, the
theory shows that the size of the field required for stability increases as the dielectric
‘contrast’ decreases, i.e. as S → 1. González et al. conducted experiments with an
almost neutrally buoyant system – castor oil in a silicone oil bath – using an AC field
to nullify charge transport and produce perfect dielectric behaviour. Their data agreed
with the theory for β > 4; disagreements for β < 4 were attributed to buoyancy since
the Bond number, Bo ≡ g∆ρa2/γ, was not zero. Here g represents the gravitational
acceleration and ∆ρ is the density difference between the bridge and surrounding fluid.
Later work at a Bond number of O(10−2) showed better agreement with an amended
theory (González & Castellanos 1993). Ramos, Gonzáles & Castellanos (1994) found
good agreement when experimental data were compared to a theory that includes
buoyancy.

Only two sets of experiments have been reported on leaky dielectric bridges.
Sankaran & Saville (1993) used a mixture of castor oil and eugenol to form a
neutrally buoyant liquid bridge in silicone oil. For aspect ratios above π, two distinct
shape transitions were identified. Above a certain field strength, the bridge was a
‘perfect’ cylinder. Upon lowering the field strength, a cylinder-to-amphora shape
transition was observed; at a specific (lower) field strength the bridge ‘pinched-off’
(asymmetrically) into separate drops. Interestingly, when the fluids were interchanged,
an axial field destabilized the bridge for aspect ratios less than π, as predicted by
the leaky dielectric model (Saville 1970). Sankaran & Saville also noted that the
bridge always deforms with the ‘bulge’ nearest the positive electrode, indicating an
unexplained electrical bias. No theory exists for two-phase, leaky dielectric bridges.

Burcham & Saville (2000) studied liquid bridges suspended in a dielectric gas,
sulphur hexafluoride (SF6). To minimize buoyancy, their experiments were carried
out in a microgravity environment aboard the space shuttle Columbia. Because the
fluid surrounding the liquid bridge was a dielectric gas, interphase charge transport
was absent. Accordingly, as long as the bridge behaves as a leaky dielectric and charge
relaxation is rapid, the precise level of conductivity is unimportant. This arrangement
partially nullifies effects due to uncertainties in the conductivity, especially those
due to moisture. However, it accentuates other charge transport mechanisms, e.g.
surface conduction, should they be present. In steady fields, Burcham & Saville found
transitions similar to those identified in liquid–liquid systems by Sankaran & Saville
(1993). The purpose of the current work is to provide a theory of the behaviour of a
leaky dielectric bridge in a gas.

Modelling the behaviour of liquid bridge in a dielectric gas is much less complicated
than for a liquid–liquid system since the hydrodynamics of the outer phase can be
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Figure 1. Sketch of a liquid bridge of length l. The undeformed bridge of radius a is indicated by
dashed lines; solid lines indicate the deformed interface, r = f(z, t).

ignored. Moreover, this configuration is particularly amenable to linear stability
analysis since, in the undeformed base state, the electric field lines are parallel to the
interface and the bridge is quiescent.

The paper is organized as follows. In § 2 a theory for analysing the stability of a
leaky dielectric bridge is set out. Since interest centres on the demarcation between
stability and instability, a linearized model is used in § 3 to formulate an eigenvalue
problem that is solved numerically. Symmetric and antisymmetric deformations are
studied and the results set out in § 4. As a consistency check, the special case of
a perfect dielectric bridge is analysed using the formalism developed for the leaky
dielectric. The agreement with the theory of González et al. (1989) is perfect. For a
leaky dielectric bridge, antisymmetric deformations turn out to be the most unstable.
The structure of the perturbation fields is also discussed, with particular attention
to the flow caused by free charge induced on the interface. Section 5 is devoted to
an extension of the Taylor–Melcher model to account for the effects of a surface
conduction. Accordingly, the conductivity is anisotropic near the surface and current
flowing into the surface from the bulk is transported laterally along the surface. Since
this diminishes the local surface charge density, higher field strengths are required for
stability. Comparisons with experiments by Burcham & Saville (2000) are discussed
in § 6. The agreement between theory and experiment for the (‘infinitesimal’) cylinder–
amphora transition is not nearly as good as it is at pinch-off. However, the addition of
a surface conductivity permits the theory to be brought into correspondence with the
experiments. Concluding observations are given in § 7. The details of the manipulations
needed to obtain the characteristic equation for stability are given in the Appendix.

2. Taylor–Melcher theory for a liquid bridge
The modelling of electrohydrodynamic phenomena involves the continuity and

momentum equations from hydrodynamics and Maxwell’s equations for the electro-
statics. The Taylor–Melcher model can be derived in a straightforward fashion from a
detailed set of balance laws that take account of bulk effects such as charge transport
(Saville 1997). Hydrodynamics and electrostatics are coupled through the interfacial
stresses, leading to a set of coupled partial differential equations. For present purposes
we simply outline the essential features of the model.

Consider the situation depicted in figure 1 where a bridge of length l is pinned
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between parallel electrodes. To establish an axial field, a voltage, φo, is applied
to one electrode while the other is earthed. This defines a reference field strength as
Eo ≡ −φo/l. For a cylindrical bridge, the field lines are perpendicular to the electrodes
(and parallel with the bridge). In accord with the Taylor–Melcher theory, the bridge
liquid is treated as an Ohmic conductor so the electric potential and electric field
follow from solutions of Laplace’s equation

∇2φ = 0, (1)

with the field strength defined by

−∇φ = E . (2)

If we scale lengths on the undeformed bridge radius and transform the potential and
field strength according to

r → ar, z → az, φ→ Eoaφ E → EoE (3)

the differential equation is unchanged. The boundary conditions are as follows.

Constant potentials at the electrodes:

φ = 0 at z = −β and φ = −2β at z = β. (4)

Conservation of current crossing the bridge surface:

E i · n = REe · n, R ≡ σe

σi
. (5)

Here, σ represents the electrical conductivity and the subscripts i and e represent
the interior and exterior fluids, respectively. It is also convenient to treat the gas
surrounding the liquid bridge as a leaky dielectric insofar as the electrical problem is
concerned. Accordingly, R denotes the conductivity of the surrounding fluid divided
by that of the bridge fluid. With this representation, the solution of the leaky dielectric
problem can be converted to that for a perfect dielectric bridge in a perfect dielectric
gas by setting R = S ≡ εe/εi .

Continuity of the tangential fields at the interface r = f(z, t):

E i · t = Ee · t. (6)

To describe the hydrodynamics, the time, velocity, pressure, and stress are trans-
formed according to

t→ ρiaνi

γ
t, u→ γ

ρiνi
u, p→ γ

a
p, σ → γ

a
σ. (7)

The new symbols denote the density, ρi, and kinematic viscosity, νi, of the bridge
fluid. Upon omitting the inertial terms in anticipation of the linearization to follow,
the dimensionless equations of motion are

Re
∂u

∂t
= −∇p+ ∇2u, ∇ · u = 0, (8)

with the Reynolds number defined as

Re ≡ ρiaγ

µ2
i

. (9)

µi denotes the shear viscosity of the bridge fluid. Note that dynamics are coupled to
the electric field through the electric stresses on the deformed interface.
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The boundary conditions are no-slip on the electrode surfaces and a balance of
normal (including interfacial tension) and tangential stresses on the bridge interface.
The stress tensors in the two phases are:

σi = −piδ + [∇ui + ∇uTi ] + ∆[E iE i − 1
2
E i · E iδ],

σe = −peδ + S∆[EeEe − 1
2
Ee · Eeδ].

}
(10)

The first part on the right of these expressions represents the pressure and viscous
stresses in a Newtonian fluid; the second part is Maxwell’s electric stress tensor.
The dimensionless group ∆ is the ratio of electrical stresses to those from interfacial
tension, i.e.

∆ ≡ aεiεoE
2
o

γ
. (11)

Moreover, because the interface deforms, the kinematic condition must hold and so

∂f

∂t
= ui · n. (12)

The position of the interface is also constrained by conservation of volume so∫ β

−β
f2dz = 2β. (13)

Finally, at the electrodes the interface is ‘pinned’ at the location of the undeformed
radius so

r = 1 at z = ±β. (14)

3. Linear stability analysis
3.1. The base state and perturbation fields

To continue the development, a base state is introduced to describe the configuration
of the undisturbed bridge. In dimensionless form this is

φo = −z − β, uo = 0, fo = 1. (15)

So, the modified pressures inside and outside the bridge are constant and denoted as

poi = −Πo
i , poe = −Πo

e . (16)

The normal stress boundary condition shows that the constants are related as

Πo
i − 1

2
∆+ 1 = Πo

e − 1
2
∆S. (17)

With the base state known, the analysis continues by studying small perturbations
of amplitude δ. Based on previous work with jets and bridges, attention focuses on
axisymmetric deformations. Accordingly,

f(z, t) = fo + δf̃(z) exp(ωt), (18)

φ(r, z, t) = φo(z) + δφ̃(r, z) exp(ωt), (19)

p(r, z, t) = po + δp̃(r, z) exp(ωt), (20)

u(r, z, t) = 0 + δũ(r, z) exp(ωt), (21)

with the perturbed state represented by a tilde. The velocity components in the r-, θ-,
and z-directions are denoted as ũ(r, z), 0, w̃(r, z).
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Since the stress tensor is

σ(r, z, t) = σo + δσ̃(r, z) exp(ωt), (22)

the linearized stress tensors written in terms of base and perturbed states are

σ̃i = −p̃iδ +
[∇ũ+ ∇ũT ]i + ∆[EoẼ + ẼEo − 1

2
[Eo · Ẽ + Ẽ · Eo]δ

]
i

(23)

and

σ̃e = −p̃eδ + ∆
[
EoẼ + ẼEo − 1

2
[Eo · Ẽ + Ẽ · Eo]δ

]
e
. (24)

For the fluids under consideration the Reynolds number is small (≈ 0.1) so we
adopt a quasi-static approximation for the equation of motion. Accordingly, the
equations describing the (linearized) perturbed state derived from (1)–(8) are

∇2φ̃ = 0 (25)

and

0 = −∇p̃+ ∇2ũ, ∇ · ũ = 0. (26)

The boundary conditions are:
(i) The no-slip condition, pinning of contact lines, and constant potential on the

electrode:

ũ = 0, φ̃ = 0, f̃ = 0 at z = ±β. (27)

On the free surface of the bridge we have
(ii) the kinematic condition:

ωf̃(z) = ũ(1, z); (28)

(iii) the balance of normal stresses:

δ exp(ωt)

[
(σ̃rr)i− (σ̃rr)e− 2

df̃

dz
((σorz)i− (σorz)e)− f̃− d2f̃

dz2

]
+(σorr)i−(σorr)e+1 = 0 (29)

and tangential stresses:

δ exp(ωt)

[
(σ̃zr)i− (σ̃zr)e +

df̃

dz

(
(σorr − σozz)i− (σorr − σozz)e

)]
+ (σozr)i− (σozr)e = 0; (30)

(iv) the continuity of current:

df̃(z)

dz
+
∂φ̃i(r, z)

∂r

∣∣∣∣∣
r=1

= R
df̃(z)

dz
+ R

∂φ̃e(r, z)

∂r

∣∣∣∣∣
r=1

; (31)

(v) the continuity of the tangential components of the electric field:

φ̃i(1, z) = φ̃e(1, z). (32)

Finally, the bridge volume is conserved so

(vi)

∫ β

−β
f̃(z) dz = 0. (33)

At this point the problem is defined and the coupled hydrodynamic and electrostatic
problems can be solved. The potentials inside and outside the liquid bridge are

φ̃i(r, z) = −
∞∑
k=0

Ak
I0(αkr)

I0(αk)
sin(αk(z + β)), (34)
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φ̃e(r, z) = −
∞∑
k=0

Ak
K0(αkr)

K0(αk)
sin(αk(z + β)), (35)

where I0(αkr) and K0(αkr) are the modified Bessel functions. The index k represents
the number of half-waves between the electrodes, i.e.

αk =
kπ

2β
. (36)

The unknown coefficients, Ak , are related to the interface position through the equation
for the continuity of current as

df̃(z)

dz
(R − 1) +

∞∑
k=1

(
Akαk sin(αk(z + β))

(
R
K1(αk)

K0(αk)
+
I1(αk)

I0(αk)

))
= 0. (37)

However, the Ak cannot be determined until the position of the interface is established
so the equations of motion must be solved.

The modified pressure and velocity fields are found by solving the equations of
motion, (26), rewritten in terms of the stream function, ψ, defined as

ũ(r, z) = −1

r

∂ψ

φz
, w̃(r, z) =

1

r

∂ψ

∂r
. (38)

Then, upon taking the curl of the momentum equation we have

E2E2ψ = 0 (39)

where

E2 ≡ ∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (40)

Using separation of variables, the stream function inside the bridge is written as

ψ(r, z) = ψR(r)ψZ (z). (41)

However, as it turns out, Fourier series cannot readily be employed for the z-
dependence since no harmonic function will satisfy the boundary conditions at the
electrodes. Nicolás (1992) dealt with this problem using Papkovich–Fadle functions,
a biharmonic, biorthogonal set of functions first used in elasticity problems by Smith
(1952) and later by Joseph (1975, 1977), and Joseph & Sturges (1975, 1978). The
Papkovich–Fadle (or P–F) functions can be separated into symmetric and anti-
symmetric functions of z and, when translated into the interface deformation, the
symmetric P–F functions represent an odd number of ‘half-waves’ on the interface,
namely an antisymmetric perturbation. The antisymmetric P–F functions yield a sym-
metric deformation with an even number of half-waves. Due to the conservation of
volume, the minimum number of ‘half-waves’ on the interface is two. The behaviour
of both types of deformation will be discussed in the next section. The details of
the analysis of antisymmetric perturbations are described in the Appendix; Burcham
(1998) explains the problem for symmetric deformations.

First we write the z-dependence of the potential in terms of antisymmetric and
symmetric parts using a trigonometric identity

sin(αk(z + β)) = sin(αkz) cos(αkβ) + cos(αkz) sin(αkβ). (42)

Therefore, when k is odd the expression is even and this pertains to symmetric
deformations; even k-values represent antisymmetric deformations.
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The solution for either type of deformation proceeds by solving for the stream
function, subject to the appropriate boundary conditions at the electrodes and on the
interface. Next the modified pressure can be calculated from the r- and z-components
of the equation of motion and the deformed interface shape function found from the
normal stress balance, subject to the conservation of volume. Then, using the stream
function to compute the modified pressure and interface position, the unknown
coefficients can be determined using the tangential stress condition, the kinematic
condition, and the electrical boundary conditions. Finally, an eigenvalue problem is
solved to find the conditions for neutral stability. Further details are set out in the
Appendix.

4. Stability of a liquid bridge in a dielectric gas
Solutions to the bridge stability problem depend parametrically on the field strength

and interfacial tension as embodied in ∆, the aspect ratio β, the dielectric constant
ratio S , and the conductivity ratio R. The expression for the deformation involves
two infinite series, a Papkovich–Fadle series to describe the hydrodynamics and a
Fourier series for electrostatics. When investigating neutral stability, the amplification
parameter ω is set to zero so ∆ is the eigenvalue in (A 45). Setting ω = 0 is equivalent
to assuming that ‘exchange of stabilities’ applies. Although we have not attempted to
prove that ω is real at the point of neutral stability, a limited number of numerical
experiments indicate that this is the case, cf. § 4.3. The coefficients in the series can be
employed to represent the interface position, charge, stream function, and potential.

4.1. Consistency with previous work

Before examining the behaviour of a leaky dielectric bridge, it is important to check
the formulation for convergence and consistency. First, the convergence of the P–F
series is rapid. For antisymmetric or symmetric deformations, three terms give the
growth rate for β > π to within 1% with ∆ = 0; even better accuracy is obtained
with ∆ 6= 0. The Fourier series also converge rapidly and expanding the solution
beyond 12 terms changes the numerical results by less than 0.1%. Convergence does
not appear to be influenced by the magnitude of S , but depends weakly on β. For
most of the results reported here, three terms in the P–F series were used along with a
21-term Fourier series for antisymmetric modes or a 22-term series for the symmetric
modes. Naturally, the results from the model agreed with Plateau’s β = π criterion
for a neutrally stable bridge without an electric field. Comparisons were also made
with amplification rates calculated for an unstable viscous bridge without an electric
field (Nicolás 1992). The results are virtually identical.

Another consistency check involved comparison with the treatment of a perfect
dielectric bridge by González et al. (1989). This necessitated a slight modification of
the boundary condition on the electric field since, for a perfect dielectric, E i ·n = SEe ·n.
With the current formulation this can be accomplished simply by setting R = S . The
numerical values computed for the β–∆ relations are identical with those computed
with the González et al. formulas.

To see the effect of pining the ends, results for a perfect dielectric bridge were
compared with those for a perfect dielectric jet (Nayyar & Murty 1960). Recall
the relation between wavenumber and β from (36), i.e. αs = kπ/2β where β is the
wavelength of the disturbance divided by the diameter. Using this definition of αs, the
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Figure 2. Neutral stability relations for a perfect dielectric bridge (——) and a jet (−−−) in a
gas for the lowest antisymmetric deformation mode.

curve of neutral stability is given by

(α2
k − 1) +

∆(S − 1)2αk

S(K1(αk)/K0(αk)) + I1(αk)/I0(αk)
= 0. (43)

As mentioned earlier, the antisymmetric case corresponds to k = 2. β–∆ relation
calculated from (43) is shown in figure 2 along with the results predicted using the
perfect dielectric bridge model. The comparison shows that pinning the ends of the
bridge increases the field required for stability.

4.2. Neutral stability

Having demonstrated that the computation procedure is consistent with previous
results, we proceed to investigate the stability of a leaky dielectric bridge. Some
neutral stability curves for a single-phase bridge are depicted in figure 3; figure 4
shows the neutral deformation interface shapes. Figure 3 also shows the stability
relations extending into the region where ∆ < 0 to illustrate that the relations cross
the ∆ = 0 axis with a positive slope. Nevertheless, ∆ < 0 is inaccessible since
electrohydrodynamic phenomena are proportional to the square of the field strength.
As illustrated on the figure, the first mode to become unstable at β = π and ∆ = 0
corresponds to an antisymmetric deformation (k = 2) with two ‘half-waves’ on the
interface (figure 4). The k = 3 mode, a symmetric deformation with three ‘half-waves’
on the interface, appears at β ≈ 4.5. Both modes are unstable at β = 5 and ∆ = 0. As
∆ is increased, the antisymmetric deformation is stabilized at ∆ ≈ 0.1; the symmetric
mode requires a larger field and so ∆ ≈ 0.37 at neutral stability. Above this value the
bridge is cylindrical. More modes become active as β is increased and at β = 7 two
antisymmetric (k = 2 and 4) and one symmetric (k = 3) modes appear. The k = 2
mode is the most unstable in the sense that the highest field strength is required to
suppress its growth.
∆–β relations for the most unstable antisymmetric and symmetric modes are shown

in figure 5 and figure 6 for various dielectric constant ratios. Comparing these results
to those predicted for a perfect dielectric bridge discloses some qualitative similarities.
As the dielectric constant contrast decreases (S → 1), the electric field needed to
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Figure 3. Neutral stability relations for different modes of deformation (S = 0.215, R = 0). The
stable region lies above a specific curve. Even values of k (the number of ‘half-waves’ in the
deformation) correspond to antisymmetric modes; odd values to symmetric modes. These values of
S and R were chosen for consistency with conditions used in the experiments to be discussed.
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Figure 4. Neutrally stable interface shape perturbations, f̃, for β = 5 (S = 0.215, R = 0).
Antisymmetric mode k = 2 (a); symmetric mode k = 3 (b).

stabilize the bridge increases since less free charge is induced at the interface. Also,
with β > π a bridge cannot be stabilized when S = 1, because no free charge can be
induced and there are no polarization forces.

While results for leaky dielectric and perfect dielectric bridges are qualitatively
similar (cf. figure 2 and figure 5) the electric field parameter necessary for stability
with a leaky dielectric is much smaller. For example, with β = 5 and S = 0.8, ∆
must be larger than 1.45 to ensure stability for a leaky dielectric liquid compared to
∆ > 54.0 with a perfect dielectric. The difference is due to free charge accumulation
at the interface and the extra stress that enhances the effect of the field.

When S > 1, a striking change in behaviour is found compared to S < 1. For
S < 1, the most unstable mode is the antisymmetric mode with two half-waves on the
interface. However, when S > 1, the dielectric constant of the ‘outer fluid’ exceeds that
of the bridge and the field necessary for neutral stability increases with the number of
waves present on the interface (figure 7). Given the possibility of infinitesimal waves
of every wavelength, it should be impossible to stabilize the bridge with an electric



174 C. L. Burcham and D. A. Saville

â

4

0
2 4 5 6 7

¢

1

3 8

0

0.5

0.8

S = 0.9

2

3

Figure 5. Neutral stability relations for the first antisymmetric mode for a leaky dielectric bridge
(S < 1, R = 0).
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Figure 6. Neutral stability relations for the first symmetric mode for a leaky dielectric bridge
(S < 1, R = 0).

field when S > 1. Moreover, an otherwise stable bridge (β < π) is destabilized by
an axial field. Similar characteristics were found experimentally for isopycnic bridges
(Sankaran & Saville 1993).

It is also interesting to examine the effects of conduction in the outer fluid, even
when the hydrodynamics of the outer phase are ignored. Since conduction in the outer
fluid allows charge to leak off the interface, the field required for neutral stability
increases with R (figure 8). Similar behaviour is found when R is fixed while S → 1,
since this also reduces the charge at the interface.

4.3. Structure of the perturbed fields

Further insight into bridge behaviour follows by inspecting the perturbation fields.
Figure 9 shows the perturbation potential, which is zero on the electrodes (z = ±β),
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Figure 7. Neutral stability relations for a leaky dielectric bridge for L = 11, 21 and 51 half-waves
(S = 4.66, R = 0). The unstable region lies below a particular curve.
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Figure 8. The effect of conduction in the outer fluid on the stability relations for the first
antisymmetric mode with S = 0.5.

largest at the midplane (r = 1, z = 0), and decreases rapidly moving away from the
bridge. Potentials inside and outside the bridge match at the deformed interface (bold
line) as stipulated by the boundary conditions. From the perturbation potential, the
perturbation charge induced on the interface can be calculated as

q = SEe · n− E i · n = δq̃(z) exp(ωt) (44)

so

q̃(z) = (SẼe,r(1, z)− Ẽi,r(1, z)) + (1− S)
df̃(z)

dz
. (45)

The interfacial charge for the lowest antisymmetric mode (two half-waves) tracks,
approximately, the ‘slope’ of the interface (figure 10). The charge on a deformed inter-
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the point of neutral stability (β = 5, ∆ = 0.369, S = 0.215). L denotes the number of terms in the
expansion. The effects of truncation are evident in the ‘ripples’ near the ends of the bridge.

face is depicted schematically on figure 11. The stabilizing effects of the electric charge
arise from both the normal and tangential components of the electric stress. Since the
normal stress is proportional to (εi − εe)(−ζ)E2

on, it acts to ‘level’ perturbations. The
tangential stress, which is proportional to the product of the induced charge and the
axial field in the base state, forces the positively charged part of the interface away
from the ‘bulge’. Both effects reduce the deformation.

The streamlines are also interesting and the flow in a neutrally stable bridge
in an axial field consists of a single toroidal recirculation (figure 12). Note the
correspondence between the flow pattern and the tangential electric stress on the
interface, cf. figure 11.
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Figure 11. Schematic diagram of the charge on the interface of a liquid bridge (β = 5, ∆ = 0.369,
S = 0.215). The ‘ticks’ denote rings where the charge is zero.
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Figure 12. Streamlines and interface position for a neutrally stable liquid bridge
(β = 5, ∆ = 0.369, S = 0.215); arrows indicate the direction of flow.
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Figure 13. Streamlines and interface position for an unstable bridge with β slightly larger than π
and ∆ = 0. Arrows indicate the direction of flow.

The behaviour of an unstable liquid bridge in the absence of a field is illustrated in
figure 13. As expected, the deformation grows as liquid flows from the neck towards
the bulge as interfacial tension pulls fluid out of the pinch. In an axial field with ∆
slightly below the neutral stability value where the electrical stresses are unable to
stabilize the bridge, the streamlines are similar to those in figure 13.

Finally, figure 14 depicts the ω–∆ relationship as the field is increased to stabilize
a bridge. The field suppresses the growth rate dramatically at first and then levels
out. Note that the growth rate is rather flat in the neighbourhood of the neutral
stability point. The results shown on figure 14 were generated by solving for ∆ with
β and ω fixed. Finding ω given ∆ and β is more challenging due to the behaviour of
the determinant of the coefficient matrix, which changes rapidly near ω = 0 in this
format.

5. The leaky dielectric model with surface conduction
The leaky dielectric model with an isotropic bulk conductivity is the simplest

representation of charge transport by dissolved ions. However, current flow, especially
near an interface, is complicated by the formation of diffuse electrical double layers.
Accordingly, the conductivity in the diffuse layer differs from that in the bulk. On a
macroscopic scale, diffuse layer effects can be represented with a ‘surface conductivity’
(Russel, Saville & Schowalter 1991). Thus, while bulk conduction is isotropic, charge
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Figure 14. ω–∆ relation for β = 5 and S = 0.215.

transport near an interface is anisotropic since the flux into the interface can be
balanced by lateral ‘surface’ conduction. To capture this effect with a perfect dielectric
outer phase, ‘lateral surface transport’ can be added to the boundary conditions as
an Ohmic process. Using σs to denote a surface conductivity modifies the charge
transport boundary condition to (in dimensionless form)

E i · n = REe · n+ Rs∇s · E i, (46)

where ∇s is the dimensionless surface divergence and Rs is the surface conductivity
ratio defined as

Rs ≡ σs

aσi
. (47)

This modifies the charge conservation boundary condition and changes (A 25) to

(R−1)Zlb+Alβ(Sl+Rsα
2
l )+ω(R−1)

∞∑
m=−∞

BmDmPlm+ω(R−1)

∞∑
m=−∞

BmCmQlm = 0 (48)

for an antisymmetric deformation. Neutral stability curves calculated for a castor
oil bridge using the new system of equations are shown in figure 15. As expected,
inclusion of surface transport destabilizes the bridge by providing a pathway for
charge redistribution on the interface.

6. Comparisons between theory and experiment
Theoretical results are compared with experimental data (Burcham & Saville 2000)

in figure 16. As expected, cylindrical bridges formed in a dielectric gas at aspect
ratios below the Plateau value were stable. Using a high field strength, cylindrical
bridges with β > π could be formed. Then, upon lowering the field two transitions
were identified: first, an antisymmetric change from a circular cylinder to an amphora
shape followed, at a lower field, by pinch-off into two drops. Although both transitions
follow trends predicted by the Taylor–Melcher model, they occur at ∆-values higher
than predicted by the model. The correspondence between the pinch-off field and the
leaky dielectric model is unexpected since the theory is based on small deformations.
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Figure 15. The effects of surface conductivity, Rs, on neutral stability relations for a castor oil
bridge in a dielectric gas (R = 0, S = 0.215).
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Figure 16. Comparison of experimental results (symbols) for a castor oil bridge in a dielectric gas
to predictions from the leaky dielectric model for the first antisymmetric mode, S = 0.21 and R = 0.
For β < π, � denotes stable, cylindrical bridges, and for β > π, • denotes the cylinder → amphora
transition, e denotes pinch-off.

The agreement between the theory and experiment can be further improved by
introducing the surface conductivity ratio as an adjustable parameter. Using the
theory set out in § 5, surface conductivities needed to bring theory and experiment
into agreement for the cylinder–amphora transitions were calculated, cf. table 1.
While one expects the surface conductivities at the two aspect ratios to be closer to
one another, it should be noted that only small amounts of electrolyte are needed
to produce conductivities of this magnitude. Contamination may also be a factor.
Another possibility is that the density of ions in the surface is field dependent.
However, analysing these phenomena requires knowledge of electrokinetics in apolar
liquids well beyond the scope of the current investigation.
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β ∆(1) ∆(2) R(3)
s

3.23 0.26 0.031 3.33
4.32 0.64 0.283 0.59

(1)Field strength parameter measured by Burcham & Saville (2000)
(2)Field strength parameter predicted from the leaky dielectric model.
(3)Conductivity ratio required to bring theory and experiment into agreement.

Table 1. Experimental and theoretical cylinder amphora transition conditions for a castor oil
bridge in SF6 where S = 0.215.

7. Concluding remarks
Two points deserve final comment. First, the qualitative behaviour predicted by

the Taylor–Melcher model accords with the experimental observations: namely, high
field strengths stabilize an otherwise unstable configuration, the most unstable config-
uration is antisymmetric with respect to the midplane, and a bridge whose dielectric
constant is lower than the surrounding fluid cannot be stabilized by a field. Sec-
ond, although the quantitative agreement between theory and experiment for the
cylinder–amphora transition is not as close as one might like, using surface transport
as an adjustable parameter brings theory and experiment into agreement. However,
this entails introducing a property that was not measured in the experimental study.
Indeed, it is not clear how this measurement should be made. Nevertheless, the theory
shows that bridge stability is acutely sensitive to surface transport. The field strength
parameter measured at pinch-off compares favourably with the theoretical value from
the linearized theory.

This work was supported by the National Aeronautics & Space Administration’s
Microgravity Science and Applications Division (NAG8-969). C. L. B. also received
support from a NASA Graduate Student Research Fellowship and a DuPont Fellow-
ship.

Appendix. Analysis of the antisymmetric modes
Following Nicolás (1992), the even P–F function,

Ψz(z) = ϕn1(z), (A 1)

is used for the z -dependence of the stream function for the antisymmetric solution.
Joseph (1977) gives some convenient representations for the P–F functions:

ϕn1(z) = βnβ sin(βnβ) cos(βnz)− βnz cos(βnβ) sin(βnz), (A 2)

ϕn2(z) = −ϕn1(z)− 2 cos(βnβ) cos(βnz). (A 3)

Expression (A 3) will be useful when the pressure is computed. The r-dependence
of the stream function found by separation of variables leads to an expression that
satisfies the ‘no-penetration’ boundary condition on the electrodes,

ψ̃i(r, z) = ωr

∞∑
n=−∞

Bn

β2
n

I1(βnr)

I1(βn)
ϕn1(z). (A 4)
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To meet the ‘no-slip’ condition,

ϕn
′

1 (±β) = −β2
nβ − βn cos(βnβ) sin(βnβ) = 0. (A 5)

Hereafter prime symbols denote differentiation. Accordingly, we must have

sin(2βnβ) + 2βnβ = 0, (A 6)

which has complex roots. It follows that the arguments of the P–F functions and
the coefficients in the stream function expansion are complex. The roots of the
characteristic equation calculated here agree with the values published by Robbins &
Smith (1948).

With the stream function in hand, the velocities and pressure can be calculated, i.e.

ũ(r, z) = −ω
∞∑

n=−∞

Bn

β2
n

I1(βnr)

I1(βn)
ϕn

′
1 (z), (A 7)

w̃(r, z) = ω

∞∑
n=−∞

Bn

βn

I0(βnr)

I1(βn)
ϕn1(z), (A 8)

p̃i(r, z) = −ω
∞∑

n=−∞

Bn

βn

I0(βnr)

I1(βn)
(ϕn

′
1 (z) + ϕn

′
2 (z)) + g0, (A 9)

with g0 as a constant of integration. The remaining boundary conditions are used to
find the unknown (complex) coefficients, Bn. Substituting the pressure, potential, and
velocities into the normal stress condition produces a second-order non-homogeneous
differential equation

f̃′′(z) + f̃(z) = ω

∞∑
n=−∞

Bn

βn

[
I0(βn)

I1(βn)
(ϕn

′
2 (z)− ϕn′1 (z)) +

2

βn
ϕn

′
1 (z)

]

+∆(S − 1)

∞∑
k=1
odd

Akαk cos(αk(z + β))− g0. (A 10)

The solution of this equation involves both P–F and Fourier series:

f̃(z) = b sin(z) + c cos(z) + ∆(S − 1)

∞∑
k=1
odd

Ak
αk

1− α2
k

cos(αk(z + β))

+ω

∞∑
n=−∞

Bn

β2
n

[(Cn − 2Dn)ϕ
n′
1 (z)− Dnϕn′2 (z)]− g0, (A 11)

with

Cn =
2 + rnβn(β

2
n − 3)

(1− β2
n )

2
, Dn =

βn(2βn − rn(1 + β2
n ))

(1− β2
n )

2
, (A 12)

and

rn =
I0(βn)

I1(βn)
. (A 13)

Next, we impose the requirements of conservation of volume

c sin(β)− g0β = 0 (A 14)
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and pinning of contact lines at the two electrodes,

b sin(β) + c cos(β)− g0 − ∆(S − 1)

∞∑
k=1
odd

Ak
αk

1− α2
k

+ 2βω

∞∑
m=−∞

BmDm = 0, (A 15)

−b sin(β) + c cos(β)− g0 + ∆(S − 1)

∞∑
k=1
odd

Ak
αk

1− α2
k

− 2βω

∞∑
m=−∞

BmDm = 0. (A 16)

From these expressions it follows that c = g0 = 0. Conservation of charge across the
interface gives

∞∑
k=1
odd

Ak

(
αkI1(αk)

I0(αk)
+ R

αkK1(αk)

K0(αk)
− ∆(S − 1)(R − 1)

α2
k

1− α2
k

)
sin(αk(z + β))

+ω(R − 1)

∞∑
m=−∞

Bm(Dmϕ
m
1 (z) + Cmϕ

m
2 (z))

+(R − 1)b cos(z)− (R − 1)c sin(z) = 0. (A 17)

From the orthogonal properties of the Fourier series∫ β

−β
sin(α1(z + β)) sin(αk(z + β)) dz = βδlk (A 18)

where δlk is the Kronecker delta. Applying the integral operator∫ β

−β
sin(α1(z + β))(·) dz (A 19)

to (A 17) gives

(R−1)Zlb+AkSkβδlk+ω(R−1)

∞∑
m=−∞

BmDmPlm+ω(R−1)

∞∑
m=−∞

BmCmQlm = 0 (A 20)

with (note: l is an odd integer)

Sk =
αkI1(αk)

I0(αk)
+ R

αkK1(αk)

K0(αk)
− ∆(S − 1)(R − 1)

α2
k

1− α2
k

, (A 21)

Plm =

∫ β

−β
ϕm1 (z) sin(αl(z + β)) dz = 4αl

β2
m cos2(ββm)

(α2
l − β2

m)2
, (A 22)

Qlm =

∫ β

−β
ϕm2 (z) sin(αl(z + β)) dz = −4α3

l

cos2(ββm)

(α2
l − β2

m)2
, (A 23)

Zl =

∫ β

−β
sin(αl(z + β)) cos(z) dz = −2αl

cos(β)

1− α2
l

. (A 24)

Equation (A 20) becomes

(R − 1)Zlb+ AlSlβ +ω(R − 1)

∞∑
m=−∞

BmDmPlm +ω(R − 1)

∞∑
m=−∞

BmCmQlm = 0. (A 25)
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The kinematic condition gives

f̃(z) = −
∞∑

n=−∞

Bn

β2
n

ϕn
′

1 (z). (A 26)

Next these expressions are combined with (A 11) and the derivative of the resultant
expression used to write an equation in terms of ϕn1(z) and ϕn2(z), exploiting the
properties of the Papkovich–Fadle functions. From the properties of P–F functions it
follows that

1

β2
m

(Cm − 2Dm)ϕm
′′

1 (z)− Dmϕm′′2 (z) = Dmϕ
m
1 (z) + Cmϕ

m
2 (z) (A 27)

so

b cos(z)−
∞∑
k=1
odd

AkUk sin(αk(z+β))+

∞∑
m=−∞

Bmϕ
m
2 (z)+ω

∞∑
m=−∞

Bm(Dmϕ
m
1 (z)+Cmϕ

m
2 (z)) = 0

(A 28)
with

Uk = ∆(S − 1)
α2
k

1− α2
k

. (A 29)

Finally, the velocity, pressure, electric field and derivative of f̃(z) with respect to z
are substituted into the tangential stress condition, giving

∆(S − 1) cos(z)b+

∞∑
k=1
odd

AkTk sin(αk(z + β))

+ω

∞∑
m=−∞

Bm((1 + Dm∆(S − 1))ϕm1 (z) + (−1 + Cm∆(S − 1))ϕm2 (z)) = 0, (A 30)

with

Tk = ∆αk

[
I1(αk)

I0(αk)
+ S

K1(αk)

K0(αk)
− ∆(S − 1)2 αk

1− α2
k

]
. (A 31)

Equations (A28) and (A30) can be written in matrix form:[ −∆(S − 1)
−1

]
b cos(z) =

∞∑
k=1
odd

Ak sin(αk(z + β))

[
Tk
−Uk

]
+

∞∑
m=−∞

Bm

[
1 0
0 1

] [
ϕm1 (z)
ϕm2 (z)

]

+

∞∑
m=−∞

Bm

[ −1 + ω(1 + Dm∆(S − 1)) ω(−1 + Cm∆(S − 1))
ωDm ωCm

] [
ϕm1 (z)
ϕm2 (z)

]
. (A 32)

The biorthogonal condition for the P–F functions is∫ β

−β
[ψn1(z)ψn2(z)]

[
0 −1
1 2

] [
ϕm1 (z)
ϕm2 (z)

]
dz = jmδnm, (A 33)

where ψn1(z) and ψn2(z) are the adjoint eigenfunctions given by (Joseph 1977)

ψnl (z) = ϕn1(z)− 2 cos(βnβ) cos(βnz), ψ
n
2(z) = ϕn1(z), jm = −4β cos4(βmβ). (A 34)
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So, applying the operator∫ β

−β
[ψn1(z)ψn2(z)]

[
0 −1
1 2

] [ ·
·
]

dz (A 35)

to (A 32) gives

0 = (−Xn + 2Yn)b+ BnJn + ω

∞∑
m=−∞

Bm[(−Inm + 2Jnm)Dm + (−Lnm + 2Knm)Cm]

+∆(S − 1)Ynb+

∞∑
k=1
odd

Ak(UkMnk + (Tk − 2Uk)Nnk)

+∆(S − 1)ω

∞∑
m=−∞

Bm[DmJnm + CmKnm] + ω

∞∑
m=−∞

Bm[Jnm −Knm]−
∞∑

m=−∞
BmJnm

(A 36)

with the following definitions:

Inm =

∫ β

−β
ψn1(z)ϕm1 (z) dz

=

 −8ββ2
m(β2

m − 3β2
n )

(β2
m cos2(ββn)− β2

n cos2(ββm))

(β2
m − β2

n )
3

, n 6= m

3β3β2
n − β cos2(ββn)(3 + 2

3
β2β2

n ), n = m,

(A 37)

Jnm =

∫ β

−β
ψn2(z)ϕm1 (z) dz =

 16ββ2
mβ

2
n

(β2
m cos2(ββn)− β2

n cos2(ββm))

(β2
m − β2

n )
3

, n 6= m

β3β2
n − β cos2(ββn)(1 + 2

3
β2β2

n ), n = m,

(A 38)

Knm =

∫ β

−β
ψn2(z)ϕm2 (z) dz

=

 −8ββ2
n (β

2
m + β2

n )
(β2
m cos2(ββn)− β2

n cos2(ββm))

(β2
m − β2

n )
3

, n 6= m

β3β2
n − β cos2(ββn)(1− 2

3
β2β2

n ), n = m,

(A 39)

Lnm =

∫ β

−β
ψn1(z)ϕm2 (z) dz =

 −16ββ4
n

(β2
m cos2(ββn)− β2

n cos2(ββm))

(β2
m − β2

n )
3

, n 6= m

−β3β2
n + β cos2(ββn)(1 + 2

3
β2β2

n ), n = m,

(A 40)

Mnk =

∫ β

−β
ψn1(z) sin(αk(z + β)) dz = −4αk

cos2(ββn)(α
2
k − 2β2

n )

(α2
k − β2

n )
2

, (A 41)

Nnk =

∫ β

−β
ψn2(z) sin(αk(z + β)) dz = 4αk

β2
n cos2(ββn)

(α2
k − β2

n )
2
, (A 42)
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Xn =

∫ β

−β
ψn1(z) cos(z) dz = −4

(1− 2β2
n )

(1− β2
n )

2
(cos2(βnβ) sin(β) + ββ2

n cos(β)), (A 43)

Yn =

∫ β

−β
ψn2(z) cos(z) dz = 4

β2
n

(1− β2
n )

2
(cos2(ββn) sin(β) + ββ2

n cos(β)). (A 44)

There are (L+1)/2 (real) Ak , 2N (complex) Bk and one (real) b. Written symbolically
in matrix form  {Equation (A 36)}

{Equation (A 25)}
{Equation (A 15)}

 Bm
Ak
b

 =

 0
0
0

 . (A 45)

Since the determinant of the matrix in this equation must be zero, the computation is
reduced to an eigenvalue problem for ω, given R, S , β, and ∆. At the neutral stability
point, ω vanishes. The solution for symmetric deformations proceeds in a similar
fashion (Burcham 1998).
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